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Summary: Alkylation and arylation of 2-trimethylsiloxyallyl halides with lithium 
dialkyl- and diarylcuprate, respectively, gave silyl enol ethers in a regiospe- 
cific manner. 

Trimethylsilyl enol ethers have been recognized as extremely important in- 
termediates in the organic synthesis for the regiospecific generation of enolates 
which may be used in the preparation of the regiospecifically a-substituted car- 
bonyl derivatives. 2 Consequently, numerous reports on the preparation of sibyl 
enol ethers have been published to date. 3 A standard method for the preparation 

of silyl enol ethers has been the silylation of carbonyl compounds with the 
combination of bases andchlorosilanes. 4 Many modifications5 including our own 

very clean catalytic dehydrogenative silylation of ketones 6 have appeared recent- 

ly, but the regiospecific preparation of silyl enol ethers from unsymmetric 
ketones remains unsolved except for few cases. 7 

In this paper we show a novel regiospecific route to trimethylsilyl enol 
ethers by the reaction of 2-trimethylsiloxyallyl halides (,.&I with lithium di- 
alkyl- and diarylcuprates (2). The requisite 3-chloro-Z-trimethylsiloxy-pro- 

pene (,&.a) can be prepared by the rearrangement of (3-chloro-2-oxopropyl)tri- 
methylsilane catalyzed by mercuric iodide. 8 Preparation of 3-bromo-3-methyl-2- 

trimethylsiloxy-1-butene (Lb) has been described in a previous paper. 
9 Results 

,,-I 
are listed in Table 1.I" 
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Table 1. Alkylation and Arylation of 2-Trimethylsiloxyallyl Halides (A) 
with Lithium Dialkyl- and Diarylcuprates (3)" 

Entry Z-Trimethylsiloxy- Cuprate Reaction 
ally1 halide conditions Product (% yield)b 
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I 
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a All reactions were carried out in ether. 
b The yield after isolation by TLC 

unless otherwise noted. ' The product was isolated by GLC. d Determined by 

GLC. e The product was isolated by TLC-GLC combination. 
f The yield after 

isolation by distillation. 



The reaction of trimethylsilyl enol ethers with an alkyllithium usually 

results in the formation of the corresponding lithium enolates, 4b but the re- 
action of La with several lithium dialkyl- and diarylcuprates proceeded very 
smoothly at the allylic position to give only one regioisomer of' silyl enol 

ethers (La) in good yield. It is noteworthy that a selective formation of pure 
SilYl en01 ethers having a terminal olefinic double bond, which are otherwise 
very difficult to obtain, was indeed realized starting from unsymmetric alkyl 
methyl ketones. Thus the importance of the synthesis of &by the present method 
(entry 1) lies in the fact that enolization of 2-butanone followed by silylation 
does not qive pure 2 under either kinetically or thermodynamically controlled 

4a condition. Thus the kinetic enolate (LiN(i-Pr)2, dimethoxyethane, Me3SiC1, 
-78O) gave a mixture of 2 and its regioisomer in a ratio of 71:29, while under 
thermodynamic control (Et3N, N,N-dimethylformamide, Me3SiC1, reflux) the ratio 

4a was 12:88. Similar results have been obtained from 2-heptanone; eg. while in 
the Present synthesis the exclusive formation of 2 was observed (entry 2), the 
ratio of 5 to its reqioisomer was 84:16 from the kinetic enolate and 13:87 from 
the thermzdynamic enolate. 4a More remarkable is the reaction of l,a with lithium 
diphenylcuprate (2~) which gave a silyl enol ether (2) exculsively in high yield 
(entry 4). To ou: knowledge , 2 has never been detected successfully under either 
kinetic or thermodynamic control, whereas its regioisomer was readily availa- 
ble,4a 

Reactions of 3-bromo-3-methyl-2-trimethylsiloxy-1-butene (l&) with cuprates 

took place regioselectively at the less alkylated carbon atom to yield the eor- 
respondinq silyl enol ethers (3&b) via an allylic rearrangement (SN2' reaction) 
similarly to reactions of allylic halides, tosylates and acetates with cu- 
prates. 11 Thus the reaction of I_& with 2,b and 5 gave selectively tetra-sub- 

stituted olefins 2 and 12, respectively (entry 6 and 7). 
As a general procedure, to a solution of a cuprate, prepared from an alkyl- 

or aryllithium (10.0 mmol) and cuprous iodide (5.0 mmol) in ether (10 ml) at O', 

a 2-trimethylsiloxyallyl halide (2) (2.0 mmol) in ether (5 ml) was added sloWlY 

from a dropping funnel. The solution was stirred magnetically for a period at 

a temperature indicated in the Table. A small portion (2~3 ml) of saturated 

aqueous solution of NH~C~ was added to the mixture to separate the organic layer 

which was taken out by a syringe. The residue was washed with ether (15 ml X 3) 
and the combined organic solution was passed through a short CO~.UIIUI (1 cm) pack- 

ed with silica gel, dried over magnesium sulfate, and concentrated Under reduced 

pressure. The residue was purified by distillation, preparative TLC or GLC. 

The products from g were readily converted to the corresponding acetonY 

derivatives by TLC treatment. 12 Therefore l_a can also be a novel and Useful 

reaqent for the direct acetonylation of alkyl and aryl groups (entry 3 and 5) - 

Related works are in progress. 
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